Routing Permutations with Link-Disjoint and Node-Disjoint Paths in a Class of Self-Routable Interconnects

نویسندگان

  • Yuanyuan Yang
  • Jianchao Wang
چکیده

In this paper, we consider efficiently routing permutations in a class of switch-based interconnects. Permutation is an important communication pattern in parallel and distributed computing systems. We present a generic approach to realizing arbitrary permutations in a class of unique-path, self-routable interconnects. It is well-known that this type of interconnect has low hardware cost, but can realize only a small portion of all possible permutations between its inputs and outputs in a single pass. In this paper, we consider routing arbitrary permutations with link-disjoint paths and node-disjoint paths in such interconnects in a minimum number of passes. In particular, routing with node-disjoint paths has important applications in the emerging optical interconnects. We employ and further expand the Latin square technique used in the all-to-all personalized exchange algorithms for this class of interconnects [1] for general permutation routing. As can be seen, our implementation of permutation routing is optimal in terms of the number of passes that messages are transmitted through the network, and it is near-optimal in network transmission time for sufficiently long messages. The possibility of adopting a single-stage interconnect is also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multipath Node-Disjoint Routing with Backup List Based on the AODV Protocol

In recent years, routing has been the most focused area in ad hoc networks research. On-demand routing in particular, is widely developed in bandwidth constrained mobile wireless ad hoc networks because of its effectiveness and efficiency. Most proposed on-demand routing protocols are built and relied on single route for each data session. Whenever there is a link disconnection on the active ro...

متن کامل

Evolutionary Computing Assisted Wireless Sensor Network Mining for QoS-Centric and Energy-efficient Routing Protocol

The exponential rise in wireless communication demands and allied applications have revitalized academia-industries to develop more efficient routing protocols. Wireless Sensor Network (WSN) being battery operated network, it often undergoes node death-causing pre-ma...

متن کامل

Performance Comparison of Link, Node and Zone Disjoint Multi-path Routing Strategies and Minimum Hop Single Path Routing for Mobile Ad Hoc Networks

The high-level contribution of this paper is a simulation-based analysis to evaluate the tradeoffs between lifetime and hop count of link-disjoint, node-disjoint and zone-disjoint multi-path routes vis-à-vis singlepath minimum hop routes for mobile ad hoc networks. The link-disjoint, node-disjoint and zone-disjoint algorithms proposed in this paper can be used to arrive at benchmarks for the ti...

متن کامل

Link-disjoint paths for reliable QoS routing

The problem of finding link/node-disjoint paths between a pair of nodes in a network has received much attention in the past. This problem is fairly well understood when the links in a network are only specified by a single link weight. However, in the context of quality of service routing, links are specified by multiple link weights and restricted by multiple constraints. Unfortunately, the p...

متن کامل

An Analysis of Link Disjoint and Node Disjoint Multipath Routing for Mobile Ad Hoc Network

In Mobile Ad hoc Network, path between source and destination node changes too frequently due to unpredictable behavior and movement of mobile nodes. The data delivery to the intended destination becomes very challenging. The paths exist between source and destination node may be various types. Data delivery may be done with single or multiple paths. Single path sometimes not guaranteed about d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Parallel Distrib. Syst.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2003